Practical Exercises on Convexification

27 April 2023

Exercise 1 (Rank-one convexification). The one-dimensional convexification can be realized as follows: Let $\left(f_{j}\right)_{j=0, \ldots, J}$ be a sequence of function values associated with grid points $x_{j}=x_{0}+h j$. Set $g_{j}=f_{j}$ for $j=0, \ldots, J$. Then for $j=2, \ldots, J$ fix $g_{j}=f_{j}$ if

$$
\frac{g_{j-1}-g_{j-2}}{x_{j-1}-x_{j-2}} \leq \frac{g_{j}-g_{j-1}}{x_{j}-x_{j-1}}
$$

Otherwise determine the smallest $k \in \mathbb{N}_{+}$with $k \leq j-2$ such that

$$
\frac{g_{j-k}-g_{j-k-1}}{x_{j-k}-x_{j-k-1}} \leq \frac{g_{j}-g_{j-k}}{x_{j}-x_{j-k}}
$$

and replace g_{j-k+m} for $m=1, \ldots, k$ by

$$
g_{j-k+m}=g_{j-k}+\left(x_{j-k+m}-x_{j-k}\right) \frac{g_{j}-g_{j-k}}{x_{j}-x_{j-k}}
$$

Implement the above algorithm and apply it to an appropriate set of function values. What assumptions does f need to fulfill such that the described method results in a convex function g ?

Exercise 2 (Energy minimization). For a uniform partition \mathscr{T}_{h} of $\Omega=(0,1)$ with meshsize $h=1 / N$ and

$$
\mathscr{S}^{1}\left(\mathscr{T}_{h}\right):=\left\{v_{h} \in C(\bar{\Omega}):\left.v_{h}\right|_{T} \in P_{1}(T) \text { for all } T \in \mathscr{T}_{h}\right\}
$$

we seek a minimizer $u_{h} \in \mathscr{S}^{1}\left(\mathscr{T}_{h}\right)$ of the functional

$$
I_{h}\left(u_{h}\right)=\frac{1}{4} \int_{0}^{1}\left(\left|u_{h}^{\prime}\right|^{2}-1\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{0}^{1} u_{h}^{2} \mathrm{~d} x
$$

Implement a function energy that returns the value $I_{h}\left(u_{h}\right)$ of a function $u_{h} \in \mathscr{S}^{1}\left(\mathscr{T}_{h}\right)$. Realize the practical minimization of the energy for a random initial guess satisfying $u_{h}(0)=u_{h}(1)=0$ and $u_{h}(x) \in[-h, h]$. Plot the numerical solutions in each step. Hint: In Octave the function fminserach(@energy, u) can be used.
Exercise 3 (Polyconvexification). (i) Download the script polyconvexification.m.
(ii) Create a subroutine grid_gen_mat that realizes the grid $\mathscr{N}_{\delta, r}=\delta \mathbb{Z}^{2 \times 2} \cap K_{r}$, where $K_{r}:=\left\{F \in \mathbb{R}^{2 \times 2}:|F|_{\infty} \leq r\right\}$. How many elements $F \in \mathbb{R}^{2 \times 2}$ does the set $\mathscr{N}_{\delta, r}$ contain? (iii) Solve the minimization problem $W_{\mathscr{N}_{\text {active }}}^{\mathrm{pc}}$ inside the function lin_prog defined via

$$
W_{\mathscr{N}}^{\mathrm{pc}}(F)=\inf \left\{\sum_{A \in \mathscr{N}} \theta_{A} W(A): \theta_{A} \geq 0, \sum_{A \in \mathscr{N}} \theta_{A}=1, \sum_{A \in \mathscr{N}} \theta_{A} T(A)=T(F)\right\}
$$

to obtain the convex coefficients $\left(\theta_{A}\right)_{A \in \mathscr{N}}$ associated to the fixed nodes $A \in \mathscr{N} \subset \mathbb{R}^{2 \times 2}$. Hint: In Octave the function glpk solves a linear minimization problem subject to equality and inequality constraints.

