Skip to main content

Publications 2020/2023

NumberPublicationCorresponding Projekt
1P. Lewintan, S. Müller, P. Neff: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. Calculus of Variations and Partial Differential Equations, 2021, 60. Jg., Nr. 4, S. 1-46. https://doi.org/10.1007/s00526-021-02000-x BibTex5, 15
2W. G. Nöhring, J. Grießer, P. Dondl, L. Pastewka: Surface lattice Green's functions for high-entropy alloys. Modelling and Simulation in Materials Science and Engineering, 2021, 30. Jg., Nr. 1, S. 015007. https://doi.org/10.1088/1361-651X/ac3ca2 BibTex6
3P. Lewintan, P. Neff: Nečas-Lions lemma revisited: An L^p-version of the generalized Korn inequality for incompatible tensor fields. Mathematical Methods in the Applied Sciences, 2021, 44. Jg., Nr. 14, S. 11392-11403. http://doi.org/10.1002/mma.7498 BibTex5
4P. Lewintan, P. Neff: The L^p-version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative. Comptes Rendus. Mathématique. Académie des Sciences, 2020. preprint: arXiv:1912.11551 BibTex5
5P. Lewintan, P. Neff: L^p-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152. Jg., Nr. 6, S. 1477-1508. https://doi.org/10.1017/prm.2021.62 BibTex5
6P. Lewintan, P. Neff: L^p -trace-free version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions. Comptes Rendus. Mathématique, 2021, 359. Jg., Nr. 6, S. 749-755. https://doi.org/10.5802/crmath.216 BibTex5
7S. Conti, G. Dolzmann: Numerical Study of Microstructures in Multiwell Problems in Linear Elasticity. Variational Views in Mechanics. Birkhäuser, Cham, 2021. S. 1-29. https://doi.org/10.1007/978-3-030-90051-9_1 BibTex5, 7
8F. Della Porta, Angkana Rüland, Jamie M Taylor, Christian Zillinger: On a probabilistic model for martensitic avalanches incorporating mechanical compatibility. Nonlinearity, 2021, 34. Jg., Nr. 7, S. 4844. https://doi.org/10.1088/1361-6544/abfca9 preprint: https://iopscience.iop.org/article/10.1088/1361-6544/abfca9/pdf BibTex16
9A. Rüland, A. Tribuzio: On the Energy Scaling Behaviour of a Singularly Perturbed Tartar Square. Archive for Rational Mechanics and Analysis, 2022, 243. Jg., Nr. 1, S. 401-431. https://doi.org/10.1007/s00205-021-01729-1 BibTex16
10D. Knees, V. Shcherbakov: A penalized version of the local minimization scheme for rate-independent systems. Applied Mathematics Letters, 2021, 115. Jg., S. 106954. https://doi.org/10.1016/j.aml.2020.106954 preprint: https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/347648611 BibTex13
11S. Bartels, A. Bonito, P. Hornung: Modeling and simulation of thin sheet folding. Interfaces and Free Boundaries, 2022. https://doi.org/10.4171/IFB/478 preprint: https://arxiv.org/pdf/2108.00937 BibTex1
12A. Rüland, A. Tribuzio:  On the energy scaling behaviour of singular perturbation models with prescribed Dirichlet data involving higher order laminates. 

ESAIM: Control, Optimisation and Calculus of Variations, 2023, vol. 29, nr. 68. https://doi.org/10.1051/cocv/2023047 preprint: https://arxiv.org/abs/2104.05496 BibTex

16
13S. Bartels, A. Bonito, P. Tscherner: Error Estimates For A Linear Folding Model. preprint: https://arxiv.org/abs/2205.05720 BibTex1
14A. Rüland,A. Tribuzio: On Scaling Laws for Multi-Well Nucleation Problems without Gauge Invariances. Journal of Nonlinear Science, 2023, vol. 33, nr. 25. https://doi.org/10.1007/s00332-022-09879-6 preprint: https://arxiv.org/abs/2206.05164 BibTex16
15M. Santilli, B. Schmidt: A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions. preprint: https://arxiv.org/abs/2205.04512 BibTex17
16B. Schmidt, J. Zeman: A bending-torsion theory for thin and ultrathin rods as a Γ-limit of atomistic models. preprint: https://arxiv.org/abs/2208.04199 BibTex17
17B. Schmidt, J. Zeman: A continuum model for brittle nanowires derived from an atomistic description by Γ-convergence. preprint: https://arxiv.org/abs/2208.04195 BibTex17
18

M. Köhler, T. Neumeier, J. Melchior, M. A. Peter, D. Peterseim, D. Balzani: Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains. Acta Mechanica, 2022, 233. Jg., Nr. 11, S. 4347-4364 https://doi.org/10.1007/s00707-022-03332-1 BibTex

2
19A. Brunk, H. Egger, O. Habrich, and M. Lukacovy-Medvidova: A structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system. preprint: https://doi.org/10.48550/arXiv.2209.03849 BibTex9
20A. Brunk, H. Egger, and O. Habrich: On uniqueness and stable estimation of multiple parameters in the Cahn-Hilliard equation. preprint: https://arxiv.org/abs/2208.10201  BibTex9
21A. Brunk, H. Egger, O. Habrich, and M. Lukacova-Medvidova: Relative energy estimates for the Cahn-Hilliard equation with concentration dependent mobility. Preprint: https://doi.org/10.48550/arXiv.2102.05704 BibTex9
22Y. Yang, M. Fathidoost, T. D. Oyedeji, P. Bondi, X. Zhou, H. Egger and B.-X. Xu: A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites. Scripta Materialia, 2022, 212. Jg., S. 114537. https://doi.org/10.1016/j.scriptamat.2022.114537 preprint: https://www.researchgate.net/profile/Yangyiwei-Yang-2/publication/358106050 BibTex9
23H. Egger, O. Habrich, and V. Shashkov: Energy stable Galerkin approximation of Hamiltonian and gradient systems. Comput. Meth. Appl. Math. 21 (2021), https://arxiv.org/pdf/1812.04253 BibTex9
24P. Dondl, S. Conti, and J. Orlik: Variational modeling of paperboard delamination under bending. Math. in Eng. 6 (2023), 1–28. preprint: arXiv:2110.08672 doi: 10.3934/mine.2023039. BibTex5,6
25S. Conti, F. Hoffmann, and M. Ortiz: Model-free data-driven inference. preprint: arXiv:2106.02728 (2021) BibTex5
26S. Conti, R. V. Kohn, and O. Misiats: Energy minimizing twinning with variable volume fraction, for two nonlinear elastic phases with a single rank-one connection. Mathematical Models and Methods in Applied Sciences, 2022, 32. Jg., Nr. 08, S. 1671-1723. https://dx.doi.org/10.1142/S0218202522500397 preprint: https://www.math.nyu.edu/~kohn/papers/ContiKohnMisiats-M3AS.pdf BibTex5
27S. Conti, M. Focardi, and F. Iurlano: Phase-field approximation of a vectorial, geometrically nonlinear cohesive fracture energy. preprint: arXiv:2205.06541(2022) BibTex5
28Vaios Laschos, Alexander Mielke: Evolutionary Variational Inequalities on the Hellinger-Kantorovich and the spherical Hellinger-Kantorovich spaces. preprint: https://arxiv.org/pdf/2207.09815 BibTex14
29Alexander Mielke, Thomas Roubicek: Qualitative study of a geodynamical rate-and-state model for elastoplastic shear flows in crustal faults. WIAS, preprint arXiv: 2207.1107 BibTex14
30Alexander Mielke, Ricarda Rossi: Balanced-viscosity solutions to infinite-dimensional multi-rate systems. WIAS, preprint: arXiv: 2112.01794 BibTex14
31J. Potthoff, B. Wirth: Optimal fine-scale structures in compliance minimization for a uniaxial load in three space dimensions. ESAIM: Control, Optimisation and Calculus of Variations 28:27, 2022 preprint: https://arxiv.org/abs/2111.06910 BibTex4
32X. Zhou, Y. Yang, S. Bharech, B. Lin, J. Schröder, B.-X. Xu3D‐multilayer simulation of microstructure and mechanical properties of porous materials by selective sintering. GAMM‐Mitteilungen, 2021, 44. Jg., Nr. 4, S. e202100017. https://doi.org/10.1002/gamm.202100017 BibTex9, 15
33T. D. Oyedeji, Y. Yang, H. Egger, B.-X. Xu: Variational quantitative phase-field modeling of non-isothermal sintering process. preprint: https://arxiv.org/abs/2209.14913 BibTex9
34D. Knees, V. Shcherbakov: A penalized version of the local minimization scheme for rate-independent systems. Applied Mathematics Letters, 2021, 115. Jg., S. 106954. https://doi.org/10.1016/j.aml.2020.106954 preprint: https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/347648611 BibTex13
35D. Knees, S. Owczarek, P. Neff: A local regularity result for the relaxed micromorphic model based on inner variations. Journal of Mathematical Analysis and Applications, 2023, 519. Jg., Nr. 2, S. 126806. https://doi.org/10.1016/j.jmaa.2022.126806 preprint: https://arxiv.org/pdf/2208.04821 BibTex13,15
36A. Rüland: Rigidity and Flexibility in the Modelling of Shape-Memory Alloys. Research in Mathematics of Materials Science, 2022, S. 501-515. https://doi.org/10.1007/978-3-031-04496-0_21 BibTex16
37A. Rüland, T.M. Simon: On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation.  preprint: https://arxiv.org/abs/2210.04304 BibTex

16

38

F. Ernesti, J. Lendvai, M. Schneider: Investigations on the influence of the boundary conditions when computing the effective crack energy of random heterogeneous materials using fast marching methods. Computational Mechanics, 2022, S. 1-17. https://doi.org/10.1007/s00466-022-02241-3 BibTex

18
39

V. Hüsken: On prescribing the number of singular points in a Cosserat-elastic solid. ArXiv preprint. http://arxiv.org/abs/2211.11517 BibTex

10
40

S. Boddin, F. Rörentrop, D. Knees, J. Mosler: Approximation of balanced viscosity solutions of a rate-independent damage model by combining alternate minimization with a local minimization algorithm. preprint: https://arxiv.org/abs/2211.12940 BibTex

13
41

B. Kiefer, S. Prüger, O. Rheinbach, and F. Röver: Monolithic Parallel Overlapping Schwarz Methods in Fully-Coupled Nonlinear Chemo-Mechanics Problems. In: Comput Mech 71, 765–788 (2023). https://doi.org/10.1007/s00466-022-02254-y Preprint: https://arxiv.org/abs/2212.00801 BibTex

12
42

A. Heinlein, O. Rheinbach, and F. Röver: Parallel Scalability of Three-Level FROSch Preconditioners to 220000 Cores using the Theta Supercomputer. SIAM Journal on Scientific Computing, 2022, Nr. 0, S. S173-S198. https://doi.org/10.1137/21M1431205 preprint: https://tu-freiberg.de/sites/default/files/media/fakultaet-fuer-mathematik-und-informatik-fakultaet-1-9277/prep/2021-03.pdf BibTex

12
43

B. Kiefer, O. Rheinbach, S. Roth, and F. Röver: Variational Methods and Parallel Solvers in Chemo-Mechanics. PAMM, 2021, 20. Jg., Nr. 1, S. e202000272. https://doi.org/10.1002/pamm.202000272 preprint: https://www.researchgate.net/profile/Bjoern-Kiefer/publication/348775402 BibTex

12
44

B. Kiefer, S. Prüger, O. Rheinbach, F. Röver, and S. Roth: Variational Settings and Domain Decomposition Based Solution Schemes for a Coupled Deformation-Diffusion Problem. PAMM, 2021, 21. Jg., Nr. 1, S. e202100163. https://doi.org/10.1002/pamm.202100163  preprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202100163 BibTex

12
45

A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver: A Three-Level Extension for Fast and Robust Overlapping Schwarz (FROSch) Preconditioners with Reduced Dimensional Coarse Space. Domain Decomposition Methods in Science and Engineering XXVI. Lecture Notes in Computational Science and Engineering, vol 145. Springer, Cham. 2023 https://doi.org/10.1007/978-3-030-95025-5_54 preprint: https://www.researchgate.net/profile/Oliver-Rheinbach/publication/351056801 BibTex

12
46

A. Heinlein, O. Rheinbach, and F. Röver: Choosing the Subregions inThree-Level FROSch Preconditioners.  in: WCCM-ECCOMAS, 2021. https://doi.org/10.23967/wccm-eccomas.2020.084 BibTex

12
47M. Köhler, D. Balzani: Evolving Microstructures in Relaxed Continuum Damage Mechanics for Strain Softening. https://doi.org/10.1016/j.jmps.2023.105199 preprint:
https://arxiv.org/abs/2208.14695 BibTex
2
48D. Balzani, M. Köhler, T. Neumeier, M. A. Peter, D. Peterseim: Multidimensional rank-one convexification of incremental damage models at finite strains. preprint: https://arxiv.org/abs/2211.14318 BibTex2
49

A. Gastel, P. Neff: Regularity for a geometrically nonlinear flat Cosserat micropolar membrane shell with curvature. preprint: https://arxiv.org/abs/2211.10645 BibTex

10, 15
50

F. Behr, G. Dolzmann, K. Hackl, G. Jezdan: Analytical and numerical relaxation results for models in soil mechanics. Submitted to Cont. Mech. Thermodyn:   https://arxiv.org/abs/2212.11783 BibTex

7
51M. Santilli, B. Schmidt: Two phase models for elastic membranes with soft inclusions. preprint: https://arxiv.org/abs/2106.01120 BibTex

17

52Friederike Röver: Multi-Level Extensions for the Fast and Robust Overlapping Schwarz Preconditioners. Dissertationsschrift BibTex12
53M. Sarhil, L. Scheunemann, P. Neff, J. Schröder: On a tangential-conforming finite element formulation for the relaxed micromorphic model in 2D.  https://doi.org/10.1002/pamm.202100187 BibTex15
54J. Schröder, M. Sarhil, L. Scheunemann, P. Neff: Lagrange and H(curl,β) based Finite Element formulations for the relaxed micromorphic model.https://doi.org/10.1007/s00466-022-02198-3 BibTex15
55M. Sarhil, L. Scheunemann, J. Schröder, P. Neff: Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model. preprint: https://arxiv.org/abs/2210.17117 BibTex15
56M. Sarhil, L. Scheunemann, P. Neff, J. Schröder: Modeling the size-effect of metamaterial beams under bending via the relaxed micromorphic continuum. BibTex15
57A. Sky, M. Neunteufel, I. Münch, J. Schöberl, P. Neff: A hybrid H1 × H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear.https://doi.org/10.1007/s00466-021-02002-8 BibTex15
58A. Sky and M. Neunteufel and I. Muench and J. Schöberl and P. Neff: Primal and mixed finite element formulations for the relaxed micromorphic model. https://doi.org/10.1016/j.cma.2022.115298 BibTex15
59

B Raiţă, A Rüland, C Tissot, A Tribuzio: On Scaling Properties for a Class of Two-Well Problems for Higher Order Homogeneous Linear Differential Operators. preprint: https://arxiv.org/pdf/2306.14660.pdf BibTex

16
60

A Rüland, A Tribuzio: On the Scaling of the Cubic-to-Tetragonal Phase Transformation with Displacement Boundary Conditions. preprint: https://arxiv.org/pdf/2306.05740.pdf BibTex

16