Skip to main content

Publications 2020/2023

NumberPublicationCorresponding Projekt
1P. Lewintan, S. Müller, P. Neff: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. Calculus of Variations and Partial Differential Equations, 2021, 60. Jg., Nr. 4, S. 1-46. https://doi.org/10.1007/s00526-021-02000-x5, 15
2W. G. Nöhring, J. Grießer, P. Dondl, L. Pastewka: Surface lattice Green's functions for high-entropy alloys. Modelling and Simulation in Materials Science and Engineering, 2021, 30. Jg., Nr. 1, S. 015007. https://doi.org/10.1088/1361-651X/ac3ca26
3P. Lewintan, P. Neff: Nečas-Lions lemma revisited: An L^p-version of the generalized Korn inequality for incompatible tensor fields. Mathematical Methods in the Applied Sciences, 2021, 44. Jg., Nr. 14, S. 11392-11403. http://doi.org/10.1002/mma.74985
4P. Lewintan, P. Neff: The L^p-version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative. Comptes Rendus. Mathématique. Académie des Sciences, 2020. preprint: arXiv:1912.115515
5P. Lewintan, P. Neff: L^p-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152. Jg., Nr. 6, S. 1477-1508. https://doi.org/10.1017/prm.2021.625
6P. Lewintan, P. Neff: L^p -trace-free version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions. Comptes Rendus. Mathématique, 2021, 359. Jg., Nr. 6, S. 749-755. https://doi.org/10.5802/crmath.2165
7S. Conti, G. Dolzmann: Numerical Study of Microstructures in Multiwell Problems in Linear Elasticity. Variational Views in Mechanics. Birkhäuser, Cham, 2021. S. 1-29. https://doi.org/10.1007/978-3-030-90051-9_15, 7
8F. Della Porta, Angkana Rüland, Jamie M Taylor, Christian Zillinger: On a probabilistic model for martensitic avalanches incorporating mechanical compatibility. Nonlinearity, 2021, 34. Jg., Nr. 7, S. 4844. https://doi.org/10.1088/1361-6544/abfca9 preprint: https://iopscience.iop.org/article/10.1088/1361-6544/abfca9/pdf16
9A. Rüland, A. Tribuzio: On the Energy Scaling Behaviour of a Singularly Perturbed Tartar Square. Archive for Rational Mechanics and Analysis, 2022, 243. Jg., Nr. 1, S. 401-431. https://doi.org/10.1007/s00205-021-01729-116
10D. Knees, V. Shcherbakov: A penalized version of the local minimization scheme for rate-independent systems. Applied Mathematics Letters, 2021, 115. Jg., S. 106954. https://doi.org/10.1016/j.aml.2020.106954 preprint: https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/34764861113
11S. Bartels, A. Bonito, P. Hornung: Modeling and simulation of thin sheet folding. Interfaces and Free Boundaries, 2022. https://doi.org/10.4171/IFB/478 preprint: https://arxiv.org/pdf/2108.009371
12A. Rüland, A. Tribuzio: On the Energy Scaling Behaviour of a Singularly Perturbation Models Involving Higher Order Laminates.  preprint: https://arxiv.org/abs/2104.0549616
13S. Bartels, A. Bonito, P. Tscherner: Error Estimates For A Linear Folding Model. preprint: https://arxiv.org/abs/2205.057201
14A. Rüland,A. Tribuzio: On Scaling Laws for Multi-Well Nucleation Problems without Gauge Invariances. preprint: https://arxiv.org/abs/2206.0516416
15M. Santilli, B. Schmidt: A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions. preprint: https://arxiv.org/abs/2205.0451217
16B. Schmidt, J. Zeman: A bending-torsion theory for thin and ultrathin rods as a Γ-limit of atomistic models. preprint: https://arxiv.org/abs/2208.0419917
17B. Schmidt, J. Zeman: A continuum model for brittle nanowires derived from an atomistic description by Γ-convergence. preprint: https://arxiv.org/abs/2208.0419517
18

M. Köhler, T. Neumeier, J. Melchior, M. A. Peter, D. Peterseim, D. Balzani: Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains. Acta Mechanica, 2022, 233. Jg., Nr. 11, S. 4347-4364 https://doi.org/10.1007/s00707-022-03332-1

2
19A. Brunk, H. Egger, O. Habrich, and M. Lukacovy-Medvidova: A structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system. preprint: https://doi.org/10.48550/arXiv.2209.038499
20A. Brunk, H. Egger, and O. Habrich: On uniqueness and stable estimation of multiple parameters in the Cahn-Hilliard equation. preprint: https://arxiv.org/abs/2208.10201 9
21A. Brunk, H. Egger, O. Habrich, and M. Lukacova-Medvidova: Relative energy estimates for the Cahn-Hilliard equation with concentration dependent mobility. Preprint: https://doi.org/10.48550/arXiv.2102.057049
22Y. Yang, M. Fathidoost, T. D. Oyedeji, P. Bondi, X. Zhou, H. Egger and B.-X. Xu: A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites. Scripta Materialia, 2022, 212. Jg., S. 114537. https://doi.org/10.1016/j.scriptamat.2022.114537 preprint: https://www.researchgate.net/profile/Yangyiwei-Yang-2/publication/3581060509
23H. Egger, O. Habrich, and V. Shashkov: Energy stable Galerkin approximation of Hamiltonian and gradient systems. Comput. Meth. Appl. Math. 21 (2021), https://arxiv.org/pdf/1812.042539
24P. Dondl, S. Conti, and J. Orlik: Variational modeling of paperboard delamination under bending. Math. in Eng. 6 (2023), 1–28. preprint: arXiv:2110.08672 doi: 10.3934/mine.2023039.5,6
25S. Conti, F. Hoffmann, and M. Ortiz: Model-free data-driven inference. preprint: arXiv:2106.02728 (2021)5
26S. Conti, R. V. Kohn, and O. Misiats: Energy minimizing twinning with variable volume fraction, for two nonlinear elastic phases with a single rank-one connection. Mathematical Models and Methods in Applied Sciences, 2022, 32. Jg., Nr. 08, S. 1671-1723. https://dx.doi.org/10.1142/S0218202522500397 preprint: https://www.math.nyu.edu/~kohn/papers/ContiKohnMisiats-M3AS.pdf5
27S. Conti, M. Focardi, and F. Iurlano: Phase-field approximation of a vectorial, geometrically nonlinear cohesive fracture energy. preprint: arXiv:2205.06541(2022)5
28Vaios Laschos, Alexander Mielke: Evolutionary Variational Inequalities on the Hellinger-Kantorovich and the spherical Hellinger-Kantorovich spaces. preprint: https://arxiv.org/pdf/2207.0981514
29Alexander Mielke, Thomas Roubicek: Qualitative study of a geodynamical rate-and-state model for elastoplastic shear flows in crustal faults. WIAS, preprint arXiv: 2207.110714
30Alexander Mielke, Ricarda Rossi: Balanced-viscosity solutions to infinite-dimensional multi-rate systems. WIAS, preprint: arXiv: 2112.0179414
31J. Potthoff, B. Wirth: Optimal fine-scale structures in compliance minimization for a uniaxial load in three space dimensions. ESAIM: Control, Optimisation and Calculus of Variations 28:27, 2022 preprint: https://arxiv.org/abs/2111.069104
32X. Zhou, Y. Yang, S. Bharech, B. Lin, J. Schröder, B.-X. Xu3D‐multilayer simulation of microstructure and mechanical properties of porous materials by selective sintering. GAMM‐Mitteilungen, 2021, 44. Jg., Nr. 4, S. e202100017. https://doi.org/10.1002/gamm.2021000179, 15
33T. D. Oyedeji, Y. Yang, H. Egger, B.-X. Xu: Variational quantitative phase-field modeling of non-isothermal sintering process. preprint: https://arxiv.org/abs/2209.149139
34D. Knees, V. Shcherbakov: A penalized version of the local minimization scheme for rate-independent systems. Applied Mathematics Letters, 2021, 115. Jg., S. 106954. https://doi.org/10.1016/j.aml.2020.106954 preprint: https://www.researchgate.net/profile/Viktor-Shcherbakov/publication/34764861113
35D. Knees, S. Owczarek, P. Neff: A local regularity result for the relaxed micromorphic model based on inner variations. Journal of Mathematical Analysis and Applications, 2023, 519. Jg., Nr. 2, S. 126806. https://doi.org/10.1016/j.jmaa.2022.126806 preprint: https://arxiv.org/pdf/2208.0482113,15
36A. Rüland: Rigidity and Flexibility in the Modelling of Shape-Memory Alloys. Research in Mathematics of Materials Science, 2022, S. 501-515. https://doi.org/10.1007/978-3-031-04496-0_2116
37A. Rüland, T.M. Simon: On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation.  preprint: https://arxiv.org/abs/2210.04304

16

38

F. Ernesti, J. Lendvai, M. Schneider: Investigations on the influence of the boundary conditions when computing the effective crack energy of random heterogeneous materials using fast marching methods. Computational Mechanics, 2022, S. 1-17. https://doi.org/10.1007/s00466-022-02241-3

18
39

V. Hüsken: On prescribing the number of singular points in a Cosserat-elastic solid. ArXiv preprint. http://arxiv.org/abs/2211.11517

10
40

S. Boddin, F. Rörentrop, D. Knees, J. Mosler: Approximation of balanced viscosity solutions of a rate-independent damage model by combining alternate minimization with a local minimization algorithm. preprint: https://arxiv.org/abs/2211.12940

13
41

B. Kiefer, S. Prüger, O. Rheinbach, and F. Röver: Monolithic Parallel Overlapping Schwarz Methods in Fully-Coupled Nonlinear Chemo-Mechanics Problems. In: Comput Mech (2022). Accepted in revised form Nov. 2022. Also Preprint 2022-02 on https://tu-freiberg.de/fakult1/forschung/preprints

12
42

A. Heinlein, O. Rheinbach, and F. Röver: Parallel Scalability of Three-Level FROSch Preconditioners to 220000 Cores using the Theta Supercomputer. SIAM Journal on Scientific Computing, 2022, Nr. 0, S. S173-S198. https://doi.org/10.1137/21M1431205 preprint: https://tu-freiberg.de/sites/default/files/media/fakultaet-fuer-mathematik-und-informatik-fakultaet-1-9277/prep/2021-03.pdf

12
43

B. Kiefer, O. Rheinbach, S. Roth, and F. Röver: Variational Methods and Parallel Solvers in Chemo-Mechanics. PAMM, 2021, 20. Jg., Nr. 1, S. e202000272. https://doi.org/10.1002/pamm.202000272 preprint: https://www.researchgate.net/profile/Bjoern-Kiefer/publication/348775402

12
44

B. Kiefer, S. Prüger, O. Rheinbach, F. Röver, and S. Roth: Variational Settings and Domain Decomposition Based Solution Schemes for a Coupled Deformation-Diffusion Problem. PAMM, 2021, 21. Jg., Nr. 1, S. e202100163. https://doi.org/10.1002/pamm.202100163  preprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202100163

12
45

A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver: A Three-Level Extension for Fast and Robust Overlapping Schwarz (FROSch) Preconditioners with Reduced Dimensional Coarse Space. TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2021. http://dx.doi.org/10.13140/RG.2.2.18009.03681 preprint: https://www.researchgate.net/profile/Oliver-Rheinbach/publication/351056801

12
46

A. Heinlein, O. Rheinbach, and F. Röver: Choosing the Subregions inThree-Level FROSch Preconditioners. TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2021. https://doi.org/10.23967/wccm-eccomas.2020.084

12
47M. Köhler, D. Balzani: Evolving Microstructures in Relaxed Continuum Damage Mechanics for Strain Softening. preprint:
https://arxiv.org/abs/2208.14695
2
48D. Balzani, M. Köhler, T. Neumeier, M. A. Peter, D. Peterseim: Multidimensional rank-one convexification of incremental damage models at finite strains. preprint: https://arxiv.org/abs/2211.143182
49

A. Gastel, P. Neff: Regularity for a geometrically nonlinear flat Cosserat micropolar membrane shell with curvature. preprint: https://arxiv.org/abs/2211.10645

10, 15
50

F. Behr, G. Dolzmann, K. Hackl, G. Jezdan: Analytical and numerical relaxation results for models in soil mechanics. Submitted to Cont. Mech. Thermodyn:   https://arxiv.org/abs/2212.11783

 

 

7